lunes, 5 de septiembre de 2011

Segunda Ley de Newton

2a.- Ley de Newton



¿Cómo es el movimiento de los objetos,   que se encuentran bajo la acción de una fuerza constante y que actúa en la misma dirección de la velocidad?

2ª Ley de Newton
Formulas y unidades
Equipos
1-2
3-4
5-6
Respuestas
El movimiento rectilíneo uniformemente acelerado también conocido como movimiento rectilíneo uniformemente variado, es aquel donde un móvil se desplaza sobre una trayectoria recta sometido a una aceleración constante.
La aceleración de un objeto es directamente proporcional a la fuerza neta que actúa sobre él, e inversamente proporcional a su masa
F= m.a
F= m.dv/dt
Si P= m.dv
F= dp/dt

M=kilogramo
A: m/s2
F: kg(m/s2)= F=Newton


Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en el momento lineal de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos. Consecuentemente, hay relación entre la causa y el efecto, esto es, la fuerza y la aceleración están relacionadas. Dicho sintéticamente, la fuerza se define simplemente en función del momento en que se aplica a un objeto, con lo que dos fuerzas serán iguales si causan la misma tasa de cambio en el momento del objeto.
En términos matemáticos esta ley se expresa mediante la relación:
\vec {F}_{\text{net}} = {\mathrm{d}\vec{p} \over \mathrm{d}t}
Donde \vec{p} es el momento lineal y \vec{F} la fuerza total. Si suponemos la masa constante y nos manejamos con velocidades que no superen el 10% de la velocidad de la luz podemos reescribir la ecuación anterior siguiendo los siguientes pasos:
Sabemos que \vec{p} es el momento lineal, que se puede escribir m.V donde m es la masa del cuerpo y V su velocidad.
\vec{F}_{\text{net}} = {\mathrm{d}(m.\vec {V}) \over \mathrm{d}t}
Consideramos a la masa constante y podemos escribir   {\mathrm{d}\vec {V} \over \mathrm{d}t}=\vec{a} aplicando estas modificaciones a la ecuación anterior:
\vec{F} = m\vec{a}
que es la ecuación fundamental de la dinámica, donde la constante de proporcionalidad, distinta para cada cuerpo, es su masa de inercia. Veamos lo siguiente, si despejamos m de la ecuación anterior obtenemos que m es la relación que existe entre \vec{F} y \vec{a}. Es decir la relación que hay entre la fuerza aplicada al cuerpo y la aceleración obtenida. Cuando un cuerpo tiene una gran resistencia a cambiar su aceleración (una gran masa) se dice que tiene mucha inercia. Es por esta razón por la que la masa se define como una medida de la inercia del cuerpo.

No hay comentarios:

Publicar un comentario