viernes, 28 de octubre de 2011

Aplicaciones de las formas de calor: conducción, convección, radiación.

Preguntas ¿Cuándo se presenta la transmisión de energía térmica? ¿Cuáles son la forma de transmisión de la energía térmica? ¿En qué consiste la conducción térmica? ¿En qué consiste la convección térmica? ¿En qué consiste la radiación térmica? ¿Cuáles materiales son buenos o malos transmisores de la energía térmica?
Equipos 5 1 2 4 3 6
Respuestas Cuando ambos cuerpos igualan sus temperaturas
Se transfiere mediante conveccion, radiación o conduccion…. No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los solidos, pero se cree que se debe, en parte, al movimiento de electrones libres que transportan energía cuando existe una diferencia de temperatura. Traspasa el calor entre zonas con diferentes temperaturas. Se produce únicamente por medio de materiales fluidos. Esto al calentarse, aumenta el volumen y por lo tanto, su densidad disminuye y ascocian desplazando el fluido que se aumenta en la parte superior y que esta es menor temperatura Consiste en la propagación de energía en forma de ondas electromagnéticas o partículas subatómicas a través del vacio material. Los conductores eléctricos suelen ser buenos conductores de calor (los metales).


Transferencia de calor , en física, proceso por el que se intercambia energía en forma de calor entre distintos cuerpos, o entre diferentes partes de un mismo cuerpo que están a distinta temperatura. El calor se transfiere mediante convección, radiación o conducción. Aunque estos tres procesospueden tener lugar simultáneamente

CONDUCCIÓN
En los sólidos, la única forma de transferencia de calor es la conducción. Si se calienta un extremo de una varilla metálica, de forma que aumente su temperatura, el calor se transmite hasta el extremo más frío por conducción. No se comprende en su totalidad el mecanismo exacto de la conducción de calor en los sólidos, pero se cree que se debe, en parte, al movimientode los electrones libres que transportan energía cuando existe una diferencia de temperatura. Esta teoría explica por qué los buenos conductores eléctricos también tienden a ser buenos conductores del calor. En 1822, el matemático francés Joseph Fourierdio una expresión matemática precisa que hoy se conoce como ley de Fourier de la conducción del calor. Esta ley afirma que la velocidadde conducción de calor a través de un cuerpo por unidad de sección transversal es proporcional al gradiente de temperatura que existe en el cuerpo (con el signo cambiado).
El factor de proporcionalidad se denomina conductividad térmica del material




CONVECCIÓN
Si existe una diferencia de temperatura en el interior de un líquido o un gas, es casi seguro que se producirá un movimiento del fluido. Este movimiento transfiere calor de una parte del fluido a otra por un proceso llamado convección. El movimiento del fluido puede ser natural o forzado. Si se calienta un líquido o un gas, su densidad (masa por unidad de volumen) suele disminuir. Si el líquido o gas se encuentra en el campo gravitatorio, el fluido más caliente y menos denso asciende, mientras que el fluido más frío y más denso desciende. Este tipo de movimiento, debido exclusivamente a la no uniformidad de la temperatura del fluido, se denomina convección natural. La convección forzada se logra sometiendo el fluido a un gradiente de presiones, con lo que se fuerzasu movimiento de acuerdo a las leyes de la mecánica de fluidos.
Supongamos, por ejemplo, que calentamos desde abajo una cacerola llena de agua.


RADIACIÓN
La radiación presenta una diferencia fundamental respecto a la conducción y la convección: las sustancias que intercambian calor no tienen que estar en contacto, sino que pueden estar separadas por un vacío. La radiación es un término que se aplica genéricamente a toda clase de fenómenos relacionados con ondaselectromagnéticas. Algunos fenómenos de la radiación pueden describirse mediante la teoría de ondas, pero la única explicación general satisfactoria de la radiación electromagnética es la teoría cuántica. En 1905, Albert Einstein sugirió que la radiación presenta a veces un comportamientocuantizado: en el efecto fotoeléctrico, la radiación se comporta como minúsculos proyectiles llamados fotones y no como ondas. La naturalezacuántica de la energía radiante se había postulado antes de la aparición del artículo de Einstein, y en 1900 el físico alemán Max Planck empleó la teoría cuántica y el formalismo matemático de la mecánica estadística para derivar una ley fundamental de la radiación. La expresión matemática de esta ley, llamada distribuciónde Planck, relaciona la intensidad de la energía radiante que emite un cuerpo en una longitud de onda determinada con la temperatura del cuerpo. Para cada temperatura y cada longitud de onda existe un máximo de energía radiante. Sólo un cuerpo ideal (cuerpo negro) emite radiación ajustándose exactamente a la ley de Planck. Los cuerpos reales emiten con una intensidad algo menor.

No hay comentarios:

Publicar un comentario